
CS396
Deep Learning for Computer Vision

Lec 14: Fast Object Detection

Announcements

■ Lab 4:
● Released today and is due next Thursday (Oct 31st).
● Make sure to ask for our LA (Brian)’s help if needed!

■ Next week:
● We’ll meet online for both classes next week at the same time. Here’s the link (it is the same as

in Canvas).
● I’ll be holding office hours by appointment (not during my usual scheduled time). Please just

send me an email and we’ll find a time to meet.

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Why Fast Object Detection

■ Last time we saw that Object Detection is a pretty useful in many real world scenarios
and we use R-CNN to get good detections.

■ Many of these scenarios, however, also require not just good, but also fast detections.
■ Take the example of a self-driving car: it needs to be quick at detecting that there is an

object (a person or a another car) in front of it in order to avoid a collision.
■ Today we’ll see how two strategies

used to make R-CNN faster: Fast
R-CNN and Faster R-CNN

■ Finally, we’ll see the most efficient
and the de facto method used for
Object Detection nowadays, called
YOLO.

Problems with R-CNN

■ In practice, R-CNN is slow for two main reasons:
● It relies on the Selective Search Algorithm to obtain region proposals, which is slow for large

images (such as the ones from self driving cars).
● It has to wrap/resize each proposal before it goes through the network, which is also a slow

procedure.

■ In 2014, the same authors of R-CNN published a version of his R-CNN method that
makes it faster by avoid the cropping resizing. This new method was named Fast R-CNN.

VGG16
Backbone

Dense

(0.6,0.4,0.2,0.7)

‘cat’

(-0.05,0.01,0,0.02) (0.55,0.41,0.2,0.72)+ =

Dense

https://arxiv.org/abs/1504.08083

Fast R-CNN: Step-by-step

CNN

SS

■ In Fast R-CNN, the input image first goes through:
a. A CNN backbone (such as VGG16) where its feature map (of a much smaller size, compared to

the original image size) are extracted,
b. A selective search algorithm extracts region proposals from the image.

Legend:

SS: Selective search,
CNN: Backbone (VGG16),

Fast R-CNN: Step-by-step

CNN

SS

■ For each region proposal in the original image, its correspondent location, i.e. the
Region of Interest (RoI), on the feature map is computed using simple math. For
example: after 5 max-pooling operations, a box of size 160×240 becomes of size 5×7.*

Legend:

SS: Selective search,
CNN: Backbone (VGG16),

* Note that, if one is using normalized values for their boxes’ (Cx, Cy, H, W) vectors, the vectors remain the same in the feature map.

Fast R-CNN: Step-by-step

CNN

RoI
Pool

SS

■ One at a time, each region of interest goes through a RoI pooling layer (more on it later),
whose output is standardized, i.e., it is the same for any RoI shape.

■ That output then goes through a sequence of fully connected layers.

Legend:

SS: Selective search,
CNN: Backbone (VGG16),
FC: Fully Connected / Dense layers.

FC

Fast R-CNN: Step-by-step

CNN

RoI
Pool

SS

FC ‘cat’

FC

(0.6,0.4,0.2,0.7) offset (0.55,0.41,0.2,0.72)+ =

FC

■ After that FC, the resulting output becomes the input of other two sets of dense layers:
one predicts the RoI class and the other, the BB offset on the original image.

■ That offset then corrects the initial BB corresponding to the current RoI.

Legend:

SS: Selective search,
CNN: Backbone (VGG16),
FC: Fully Connected / Dense layers.

RoI Pooling Layer

■ An important feature of Fast R-CNN is the RoI pooling
layer, which was introduced in the same paper.

■ What does it work? For a given RoI, it takes a section
of the input feature map that corresponds to it and
scales it to some predefined size (e.g., 2×2).

■ The scaling is done by:
a. Dividing the region proposal into equal-sized sections

(whose number is equal to the output dimension). If a
given region dimension cannot be divided evenly by the
desired integer (like 7 divided by 2), take just the integer
parts (like 3 and 4 in that case).

b. Finding the largest value in each section.
c. Copying these max values to the output.

RoI Pooling Input

RoI Pooling Layer

Region Proposal■ An important feature of Fast R-CNN is the RoI pooling
layer, which was introduced in the same paper.

■ What does it work? For a given RoI, it takes a section
of the input feature map that corresponds to it and
scales it to some predefined size (e.g., 2×2).

■ The scaling is done by:
a. Dividing the region proposal into equal-sized sections

(whose number is equal to the output dimension). If a
given region dimension cannot be divided evenly by the
desired integer (like 7 divided by 2), take just the integer
parts (like 3 and 4 in that case).

b. Finding the largest value in each section.
c. Copying these max values to the output.

RoI Pooling Layer

Pooling Sections■ An important feature of Fast R-CNN is the RoI pooling
layer, which was introduced in the same paper.

■ What does it work? For a given RoI, it takes a section
of the input feature map that corresponds to it and
scales it to some predefined size (e.g., 2×2).

■ The scaling is done by:
a. Dividing the region proposal into equal-sized sections

(whose number is equal to the output dimension). If a
given region dimension cannot be divided evenly by the
desired integer (like 7 divided by 2), take just the integer
parts (like 3 and 4 in that case).

b. Finding the largest value in each section.
c. Copying these max values to the output.

RoI Pooling Layer

Max Value in each section■ An important feature of Fast R-CNN is the RoI pooling
layer, which was introduced in the same paper.

■ What does it work? For a given RoI, it takes a section
of the input feature map that corresponds to it and
scales it to some predefined size (e.g., 2×2).

■ The scaling is done by:
a. Dividing the region proposal into equal-sized sections

(whose number is equal to the output dimension). If a
given region dimension cannot be divided evenly by the
desired integer (like 7 divided by 2), take just the integer
parts (like 3 and 4 in that case).

b. Finding the largest value in each section.
c. Copying these max values to the output.

RoI Pooling Layer

RoI Pooling Output■ An important feature of Fast R-CNN is the RoI pooling
layer, which was introduced in the same paper.

■ What does it work? For a given RoI, it takes a section
of the input feature map that corresponds to it and
scales it to some predefined size (e.g., 2×2).

■ The scaling is done by:
a. Dividing the region proposal into equal-sized sections

(whose number is equal to the output dimension). If a
given region dimension cannot be divided evenly by the
desired integer (like 7 divided by 2), take just the integer
parts (like 3 and 4 in that case).

b. Finding the largest value in each section.
c. Copying these max values to the output.

Fast R-CNN vs R-CNN

■ Note that the big difference between R-CNN and Fast R-CNN is
● In R-CNN, we are passing the crops (resized region proposals) through the pretrained model

one at a time,
● In Fast R-CNN, we are cropping the feature map (which is obtained by passing the whole image

through a pretrained model) corresponding to each region proposal.

■ We thereby avoid the need to pass all resized region proposals through the pretrained
model in Fast R-CNN. We only need to pass the entire image once!

■ Although Fast RCNN overcomes some problems of the R-CNN, the region of proposals
are still calculated via Selective Search which is run on the CPU, whereas the network
usually runs on the GPU.

■ In 2015, it was published a paper where R-CNN’s authors improved Fast R-CNN that
removed that need, by training a network to do the region proposal procedure.

■ This new method was named Faster R-CNN.

https://arxiv.org/abs/1506.01497

Faster R-CNN: Step-by-step

CNN RPN

■ In Faster R-CNN, the initial image is initially passed through a backbone CNN like before.
■ Now, instead of computing the RoI’s from the a selective search algorithm, it predicts the

RoI’s from the feature map itself, using a Region Proposal Network.

Legend:

CNN: Backbone (VGG16),
RPN: Region Proposal Network,

Faster R-CNN: Step-by-step

CNN

RoI
Pool

RPN
FC ‘cat’

FC

offset

FC

■ Then as in Fast R-CNN, each proposed RoI goes through a RoI pooling layer, that then
becomes the input of a few Fully Connected layers, that eventually predict both the RoI
class and the BB offset on the original image.

Legend:

CNN: Backbone (VGG16),
RPN: Region Proposal Network,
FC: Fully Connected / Dense layers.

Faster R-CNN: Step-by-step

CNN

RoI
Pool

RPN
FC ‘cat’

FC

(0.6,0.4,0.2,0.7) offset (0.55,0.41,0.2,0.72)+ =

FC

■ Finally, from each RoI prediction, it is possible to recover their locations on the original
image using simple math.

■ These locations are then corrected by the offsets to become the final BB output.

Legend:

CNN: Backbone (VGG16),
RPN: Region Proposal Network,
FC: Fully Connected / Dense layers.

Region Proposal Network

■ The RPN network predicts the object proposals using Deep Learning!
■ In this network, we aim at predicting a vector of 5 dimensions for each window of the

output and for each available Anchor (which are some predefined rectangular shapes).
■ With this, we see if a given window has an object of size similar to an anchor and its BB.

Region Network Proposal with 3 anchors

a1

a2

a3

a1

a2

a3

0

0

0

?

?

?

?

?

?

?

?

?

?

?

?

Vectors for the current window
(one for each anchor):

The first value of
each vector

checks (0 or 1) if
there is an object
of shape similar to

the respective
achor in the

current window.

If there isn't an
object in the

current window
can take any

number (more on
it later).

Region Proposal Network

Region Network Proposal with 3 anchors

a1

a2

a3

a1

a2

a3

0

0

0

?

?

?

?

?

?

?

?

?

?

?

?

Vectors for the current window
(one for each anchor):

The first value of
each vector

checks (0 or 1) if
there is an object
of shape similar to

the respective
achor in the

current window.

If there’s an
object, the next 4
numbers will say
where that object

shape and
location, i.e. its
(Cx,Cy,H,W)

vector.

■ The RPN network predicts the object proposals using Deep Learning!
■ In this network, we aim at predicting a vector of 5 dimensions for each window of the

output and for each available Anchor (which are some predefined rectangular shapes).
■ With this, we see if a given window has an object of size similar to an anchor and its BB.

Region Proposal Network

Region Network Proposal with 3 anchors

a1

a2

a3

a1

a2

a3

1

0

0

.5

?

?

.5

?

?

.4

?

?

.1

?

?

Vectors for the current window
(one for each anchor):

The first value of
each vector

checks (0 or 1) if
there is an object
of shape similar to

the respective
achor in the

current window.

If there’s an
object, the next 4
numbers will say
where that object

shape and
location, i.e. its
(Cx,Cy,H,W)

vector.

■ The RPN network predicts the object proposals using Deep Learning!
■ In this network, we aim at predicting a vector of 5 dimensions for each window of the

output and for each available Anchor (which are some predefined rectangular shapes).
■ With this, we see if a given window has an object of size similar to an anchor and its BB.

Region Proposal Network

Region Network Proposal with 3 anchors

a1

a2

a3

a1

a2

a3

1

1

0

.5

.2

?

.5

.7

?

.4

.3

?

.1

.3

?

Vectors for the current window
(one for each anchor):

The first value of
each vector

checks (0 or 1) if
there is an object
of shape similar to

the respective
achor in the

current window.

If there’s an
object, the next 4
numbers will say
where that object

shape and
location, i.e. its
(Cx,Cy,H,W)

vector.

■ The RPN network predicts the object proposals using Deep Learning!
■ In this network, we aim at predicting a vector of 5 dimensions for each window of the

output and for each available Anchor (which are some predefined rectangular shapes).
■ With this, we see if a given window has an object of size similar to an anchor and its BB.

Region Proposal Network

Region Network Proposal with 3 anchors

a1

a2

a3

a1

a2

a3

0

1

0

?

.2

?

?

.7

?

?

.3

?

?

.3

?

Vectors for the current window
(one for each anchor):

The first value of
each vector

checks (0 or 1) if
there is an object
of shape similar to

the respective
achor in the

current window.

If there’s an
object, the next 4
numbers will say
where that object

shape and
location, i.e. its
(Cx,Cy,H,W)

vector.

■ The RPN network predicts the object proposals using Deep Learning!
■ In this network, we aim at predicting a vector of 5 dimensions for each window of the

output and for each available Anchor (which are some predefined rectangular shapes).
■ With this, we see if a given window has an object of size similar to an anchor and its BB.

Region Proposal Network

Region Network Proposal with 3 anchors

a1

a2

a3

a1

a2

a3

0

1

0

?

.2

?

?

.7

?

?

.3

?

?

.3

?

Vectors for the current window
(one for each anchor):

The first value of
each vector

checks (0 or 1) if
there is an object
of shape similar to

the respective
achor in the

current window.

If there’s an
object, the next 4
numbers will say
where that object

shape and
location, i.e. its
(Cx,Cy,H,W)

vector.

■ After training, we pass a feature map through the RPN and check the network’s output.
■ If, for a given window, the first value of the vector (the confidence that there is an object) is

close 1, we consider the other values in it and say we detected an object in that window.
■ This whole process is similar to what YOLO does (as we’ll see later today).

Why is Faster R-CNN faster?

■ In practice, the authors use 9 anchors:
● 3 different shapes: one square and two

rectangles with side ratios of 1:2 and 2:1.
● 3 different scales/sizes for each shape.

■ Because the RPN is also a network, not
a separate algorithm, it can be trained in
conjunction to the other FC layers in
Faster R-CNN.

■ That means that Faster R-CNN is a
single, unified network for object
detection that can be fully trained and
inferred in the GPU, making it very fast.
(some results are shown on the right).

Object detection with Faster R-CNN

Faster R-CNN in PyTorch

■ Out of the R-CNN variations, only the pretrained Faster R-CNN is available in PyTorch.
■ To do so, we just need to import the model (here with a Resnet50 backbone) and its

pretrained weights*:

■ If we have an image called img (properly processed), can simply do:

where results is a list of dictionaries (one per image, in our case the list will only have
one element), each of which contains the BB information, their classes and the
classification confidences.

from torchvision.models.detection import fasterrcnn_resnet50_fpn
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights

model_rcnn = fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)

* The FPN on the model name stands for Feature Pyramid Networks, which is at simple trick that improves classification (see this).

results = model_rcnn(img)

http://pytorch.org/vision/master/models/faster_rcnn.html
https://medium.com/analytics-vidhya/fpn-feature-pyramid-networks-77d8be41817c

Exercise (In pairs)

■ When considering training and inference, what do you think is a bottleneck of Faster
R-CNN in terms of speed? Hint: what kind of neural network has the most weights to be
learned?

You Only Look Once

■ Despite the efforts from the
R-CNN variants attain in real time
detection, it was a totally different
approach that attained it.

■ YOLO (You Only Look Once) was
originally published in 2015 and
since then its strategy has
become the standard for Object
Detection.

■ The main idea in YOLO is its smart way to collect detection data, which avoids selective
search and only pass the image through the network only once.

■ It furthermore enables to use of simpler and faster network architectures.

https://arxiv.org/abs/1506.02640

YOLO in Practice

■ For training, consider the following detection ground truth image, with two detected car
objects. Assume that we only have three possible classes: people, cars and animals.

YOLO in Practice
 1

 2
 3

 C B A

■ The first step in YOLO when preparing this data for training consists is to divide the
image in a Nc×Nc grid cells (let's say Nc = 3 in our case):

YOLO in Practice

0

?

?

?

?

?

?

?

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

A1

 1
 2

 3

 C B A

■ For each grid cell, we create a vector with numbers that check whether there’s an object
there and, if so, its characteristics:

The first number (o) simply checks if there is
an object in that cell (0 for yes, 1 for no).

If O = 0, the other vector numbers become
meaningless and they can take any value.

Cells:

bw

■ For each grid cell, we create a vector with numbers that check whether there’s an object
there and, if so, its characteristics:

YOLO in Practice

0

?

?

?

?

?

?

?

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

A1

1

.2

.8

.3

.2

0

1

0

 1
 2

 3

 C B A

B1
(0, 0)

(1, 1)

by

bx

bh

If o = 1, we normalize
its sides (in [0, 1]) to
compute the other

numbers

The following 4
numbers correspond to

the bounding box:
(bx, by) are the

normalized coordinates
of its center, (bw, bh) are
its normalized width and

height*.

The last three numbers correspond to the class of
the object (say c2 is for cars).

* The values for (bw, bh) can be both greater than 1 if their objects span multiples cells.

Cells:

YOLO in Practice

0

?

?

?

?

?

?

?

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

A1

1

.8

.2

.3

.1

0

1

0

 1
 2

 3

 C B A

B1

0

?

?

?

?

?

?

?

C1

■ For each grid cell, we create a vector with numbers that check whether there’s an object
there and, if so, its characteristics:

Cells:

YOLO in Practice

0

?

?

?

?

?

?

?

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

A1

1

.8

.2

.3

.1

0

1

0

 1
 2

 3

 C B A

B1

0

?

?

?

?

?

?

?

C1

0

?

?

?

?

?

?

?

A2

■ For each grid cell, we create a vector with numbers that check whether there’s an object
there and, if so, its characteristics:

Cells:

YOLO in Practice

0

?

?

?

?

?

?

?

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

A1

1

.8

.2

.3

.1

0

1

0

 1
 2

 3

 C B A

0

?

?

?

?

?

?

?

0

?

?

?

?

?

?

?

0

?

?

?

?

?

?

?

0

?

?

?

?

?

?

?

0

?

?

?

?

?

?

?

1

.5

.5

.9

1.1

0

1

0

0

?

?

?

?

?

?

?

B1 C1 A2 B2 C2 A3 B3 C3

■ For each grid cell, we create a vector with numbers that check whether there’s an object
there and, if so, its characteristics:

Cells:

YOLO in Practice

0

1

1

1

1

1

1

1

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

A1

1

.8

.2

.3

.1

0

1

0

 1
 2

 3

 C B A

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

.5

.3

.5

.2

0

1

0

0

1

1

1

1

1

1

1

B1 C1 A2 B2 C2 A3 B3 C3

■ For training, we can set the numbers that can take any value (when there is no object in
a cell) as any value (for instance, they can be set 1):

Cells:

YOLO in Practice

0

1

1

1

1

1

1

1

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

A1

1

.8

.2

.3

.1

0

1

0

 1
 2

 3

 C B A

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

.5

.3

.5

.2

0

1

0

0

1

1

1

1

1

1

1

B1 C1 A2 B2 C2 A3 B3 C3

0

1

1

1

1

1

1

1

1

.8

.2

.3

.1

0

1

0

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

.5

.3

.5

.2

0

1

0

0

1

1

1

1

1

1

1

=

Output/Target

■ After computing the vectors for each cell, we can rearrange them as a tensor of shape
(Nc, Nc, 5 + K), where K is the number of classes in our dataset.

Cells:

When There are Multiple Objects in a Cell

■ One big problem with this method is that it doesn’t take into account objects whose
centers are in the same cell. For example:

 1
 2

 3

 C B A

When There are Multiple Objects in a Cell

■ To handle multiple objects in the same cell, we can (again) use a set
of available Anchors*.

 1
 2

 3

 C B A

a1

a2

a3

Available
Anchors:

* Anchor boxes were introduced in the YOLO framework with YOLOv2.

https://arxiv.org/pdf/1612.08242v1.pdf

When There are Multiple Objects in a Cell

■ To handle multiple objects in the same cell, we can (again) use a set
of available Anchors.

 1
 2

 3

 C B A

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

Vectors for cell B3
(one for each anchor):

a1

a2

a3

Available
Anchors:

a1 a2 a3

For each cell and for
each anchor, we’ll
compute a vector

similar to what was
done in Faster RCNN.

When There are Multiple Objects in a Cell

■ To handle multiple objects in the same cell, we can (again) use a set
of available Anchors.

 1
 2

 3

 C B A

1

.81

.03

.2

1.5

1

0

0

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

Vectors for cell B3
(one for each anchor):

a1

a2

a3

Available
Anchors:

a1 a2 a3

Now for each object
in the image, we

check which anchor
has the most similar

shape to it.

In the case of the
person on the right, it

is anchor a1.

Having decided that,
we fill in the vector
respective to the

anchor, making sure
that o = 1 in it.

When There are Multiple Objects in a Cell

■ To handle multiple objects in the same cell, we can (again) use a set
of available Anchors.

 1
 2

 3

 C B A

1

.81

.03

.2

1.5

1

0

0

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

Vectors for cell B3
(one for each anchor):

a1

a2

a3

Available
Anchors:

1

.78

.05

2.1

1.2

0

1

0

a1 a3a2

Now for each object
in the image, we

check which anchor
has the most similar

shape to it.

In the case of the car
on the right, it is

anchor a3.

Having decided that,
we fill in the vector
respective to the

anchor, making sure
that o = 1 in it.

When There are Multiple Objects in a Cell

■ To handle multiple objects in the same cell, we can (again) use a set
of available Anchors.

 1
 2

 3

 C B A

1

.81

.03

.2

1.5

1

0

0

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

Vectors for cell B3
(one for each anchor):

a1

a2

a3

Available
Anchors:

0

?

?

?

?

?

?

?

1

.78

.05

2.1

1.2

0

1

0

a1 a2 a3

Now for each object
in the image, we

check which anchor
has the most similar

shape to it.

If there is an anchor
that wasn’t chosen by
any object, we make
o = 0 in its respective

vector.

When There are Multiple Objects in a Cell

■ If we stack all anchor vectors per cell, our output is a tensor of shape
(Nc, Nc, (5 + K)×Na), where Na is the number of available anchors.

 1
 2

 3

 C B A

1

.81

.03

.2

1.5

1

0

0

o =

bx =

by =

bw =

bh =

c1 =

c2 =

c3 =

Vectors for cell B3
(one for each anchor):

a1

a2

a3

Available
Anchors:

0

?

?

?

?

?

?

?

1

.78

.05

2.1

1.2

0

1

0

a1 a2 a3

Training of YOLO and Comparisons

■ Since the input (an image) and output (the tensor from the
previous slide) of YOLO are tensors, it can be trained using
a Fully Convolutional Network (FCN).

■ An FCN is a network made of only ConvLayers and no Fully
Connected / Dense Layers, which are training and
inference-wise expensive.

■ YOLO (with its FCN network called Darknet-19) was able to
reach Real Time* Detection and was much faster than
R-CNN.
● Fast R-CNN: 0.5 Frames Per Second (FPS).
● Faster R-CNN : 7 FPS (VGG16), 5 FPS (ResNet)
● YOLO (no FCN): 45 FPS.
● YOLO (FCN): 67 FPS (for 416×416 images).

* This was introduced with YOLOv2. The original YOLO conventionally made use of FC layers.
** Real time performance is usually considered to be attained at 60 FPS.

Darknet-19 Architecture

https://paperswithcode.com/method/darknet-19
https://arxiv.org/pdf/1612.08242v1.pdf

Versions of YOLO

■ There were many improvements on the original YOLO model (YOLOv2, YOLO9000,
YOLOv3, YOLOv4+, etc.) which improved its detection of small objects, overall accuracy
and speed.

■ One of the latest update in YOLO (YOLOv5) was introduced in 2020 (in a blog post!) and
it does predictions at 140 FPS!

■ You can easily access
YOLOv5 it and used in you
PyTorch code via TorchHub.

■ There you also find YOLOP,
for Panoptic Driving vision, i.e.,
it comprises Object (people,
car, etc.) and Lane Detection.

https://blog.roboflow.com/yolov5-is-here/
https://pytorch.org/hub/ultralytics_yolov5/
https://pytorch.org/hub/hustvl_yolop/
https://paperswithcode.com/method/yolop

PyTorch Hub

■ In PyTorch Hub you find
many more easily accessible
pretrained DL models in
PyTorch for Vision, NLP,
Audio, etc. It’s worth
checking out!

https://pytorch.org/hub/

Exercise (In pairs)

■ Say you have a fully trained Yolo model and you have one image to which you want to
do Object Detection (inference). How do you proceed?

Video: You Only Look Once

http://www.youtube.com/watch?v=Cgxsv1riJhI

